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By means of a high-frequency analysis it is shown that a Rayleigh instability is 
possible within the interactive boundary-layer formulation. This instability reflects 
the tendency of large-Reynolds-number flows to be unstable. For most, but not all, 
pressure-displacement relations both Rayleigh’s and Fjsrtoft’s theorems hold, 
although Fjsrtoft’s criterion is not a sufficient condition for instability. However, for 
two pressure-displacement relations neither theorem could be proved, and for one of 
these, unstable flows exist which are free of inflexion points. Analytically, the 
existence of this instability may result in a finite-time singularity, while numerically 
the presence of Rayleigh modes often leads to accuracy problems which cannot be 
overcome by simple grid refinement. A test integration resulted in the generation of 
small grid-dependent eddies. It is suggested that the instability may be a possible 
cause of the eddy splitting observed in experiments on unsteady flows through 
distorted channels. This Rayleigh instability is also possible within the ‘inverse ’ 
boundary-layer formulation, but is absent from classical boundary-layer problems. 

1. Introduction 
The emergence of interactive boundary-layer theory in recent years has resulted 

in asymptotic descriptions of separation and related phenomena (e.g. Stewartson 
1981 ; Smith 1982~) .  Comparisons between &mdy large-Reynolds-number asymptotic 
solutions, numerical solutions of the NavierStokes equation and experiments have 
been favourable down to surprisingly low Reynolds numbers (e.g. Jobe & Burggraf 
1974 ; Sobey 1980; Dennis & Smith 1980). However, at larger Reynolds numbers these 
steady asymptotic solutions generally diverge from the corresponding experimentally 
observed flows as a result of fluid flow instabilities. 

Paradoxically there is often a close connection between steady interactive boundary- 
layer calculations and the large-Reynolds-number asymptotic instability analysis for 
related flows. For instance, essentially the same asymptotic structure describes both 
steady flow through a slightly distorted channel and the growth/decay of lower 
branch Tollmien-Schlichting (T-S) waves in unperturbed plane Poiseuille flow (Smith 
1976u, 1979~) .  Steady asymptotic solutions are therefore often obt3ined by suppress- 
ing instabilities. Such a procedure may appear unsatisfactory at first sight, but the 
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agreement at stable Reynolds numbers between Navier-Stokes solutions and the 
large-Reynolds-number asymptotic theory gives credibility to this device. Naturally, 
asymptotic solutions so obtained can hold only at Reynolds numbers less than the 
supposedly large (but usually finite) critical value for flow instability. 

Similarly, unsteady asymptotic solutions have been found by suppressing insta- 
bilities. For example, in Appendix A it is shown that the much-studied boundary- 
layer solution for unsteady flow past an impulsively started cylinder is obtained by 
excluding a number of rapidly growing asymptotic instabilities not contained within 
the classical boundary-layer formulation. Nevertheless, good agreement has been 
found between theory and ‘low-noise ’ experiments at moderately large Reynolds 
numbers. This problem also illustrates the important point that it is sometimes not 
possible, nor desirable, to suppress all instabilities ; in particular, Cowley, Hocking 
& Tutty (1986) have shown that once a point of zero shear develops in the velocity 
profile, a linear viscous instability, which may be the trigger for unsteady separation, 
arises within the classical boundary-layer formulation. 

The existence of instabilities, and the decision of when and when not to include 
them, complicates the asymptotic study of unsteady flows compared with steady 
ones. In order to understand time-dependent flows a knowledge of the instabilities 
present in various asymptotic formulations is therefore helpful. The aim of this paper 
is to identify a Rayleigh instability within the unsteady interactive boundary-layer 
formulation, and to examine the consequences of this. 

The motivation for the work arose from the experiments by Stephanoff et al. (1983) 
on flow along a channel with an asymmetric oscillating constriction. In the vicinity 
of the distortion the flow was laminar, the Reynolds number relatively large (i.e. 
between 300 and 700), and the Strouhal number small (i.e. between 0.003 and 0.07). 
One way of modelling this flow is to pose an interactive unsteady boundary-layer 
problem ($2). 

In $3 we show that for this and other interactive formulations once the underlying 
constant shear has been sufficiently deformed a rapidly growing Rayleigh instability 
may arise. This instability is found to be possible both in interactive boundary-layer 
formulations that admit T-S waves and in those that do not. It results in the 
development of short-scale disturbances within the boundary layer ; an effect not 
dissimilar to the inflexion-point ‘ spike ’ instabilities that are observed to develop on 
T-S waves (e.g. Klebanoff, Tidstrom & Sargent 1962). The same type of Rayleigh 
instability is also possible within the ‘ inverse ’ boundary-layer formulation (Appendix 
D), but is absent from classical boundary-layer problems. Similar Rayleigh modes 
occur in unsteady nonlinear critical layers once the constant-shear basic state has 
been modified by the rolling-up of vorticity within the ‘cats-eyes’ (Killworth & 
McIntyre 1985). 

In order to show that the Rayleigh instability is more than a theoretical possibility, 
we solve the appropriate eigenvalue problem for a number of steady velocity profiles. 
This is done using a quadrature routine which accurately evaluates singular integrals 
from data provided at discrete points (see Appendix B). Then in 994 and 5 we 
demonstrate that the presence of Rayleigh modes leads to accuracy difficulties in 
the numerical integration of the unsteady interactive boundary-layer equations. The 
finite-difference scheme used is based on Cebeci’s (1979, 1983) extension of the 
standard Keller-box method. The scheme is second-order accurate, and allows 
backflow. The calculations were stable where there were no Rayleigh modes, and 
unstable where such modes existed. 



Unsteady interactive boundary-layer equation 433 

2. Formulation and initial discussion 
Our interest in flow along a channel with an oscillatory constriction led us to study 

the family of flows generated by vertically moving surfaces. The generic formulation 
of the interactive boundary-layer problem for such flows is 

Ut+UU,+VUy = -pz+uvv,  uz+vy  = 0, (2.1 a ,  b )  

u + y  asx+--oo,  ( 2 . l c )  

u = 0, v = ft on y = f(z, t ) ,  ( 2 . l d )  

u + y + A ( x , t )  as y + m ,  (2.1 e )  

where (5,  y )  are the streamwise and transverse Cartesian coordinates respectively, 
(u, v )  are the corresponding velocity components, t is time, p is the pressure, f gives 
the position of the surface, and A is the displacement function. The unsteady Prandtl 

(2.2) 
transform 

leaves (2.1 u-c) unchanged, while the boundary conditions ( 2 . l d ,  e )  are simplified to 

u = v = O  o n y = O ,  ( 2 . 3 ~ )  

u + y + A + f  asy+co. (2.3b) 

To close the problem, a ‘ pressure-displacement relation ’ or ‘interaction law ’ must 
be specified. For subsonic, supersonic, hypersonic, Smith-Daniels (S-D) and jet-like 
boundary-layer flow over small distortions these relations are respectively 

Y + y + f @ ,  t ) ,  v+v  + .fz +A, 

(e.g. Stewartson 1981; Smith 1982a; Smith & Daniels 1981). Equation ( 2 . 4 ~ )  also 
applies to certain free-surface flows (Gajjar & Smith 1983). 

The expressions (2.4a-e) hold for flows over distortions with appropriate interactive 
lengthscales. For much shorter humps they reduce to 

A = 0, (2.4.f 1 
which also applies to Poiseuille flow through both symmetrically distorted plane 
channels (Smith 1 9 7 6 ~ )  and axisymmetrically distorted circular pipes (Smith 
1976b).t 

The interactive formulation for plane Poiseuille flow through asymmetrically 
deformed channels depends on the length of the distortion, A. For A = O(&), where 
R is the Reynolds number, the flow on both walls has to be solved simultaneously 
(Smith 1976a). The governing equations and boundary conditions in each wall layer 
are again (2.1~2, b, c )  and (2 .3u) ,  but with (2.3b) replaced by 

U * + y * T A + f ,  as y f + a ,  

where the upper/lower wall is denoted by the upper/lower subscript. The two 
boundary layers interact through the pressure-displacement relation 

t Although A = 0 means that there is no interaction between pressure and displacement, (2.4f) 
is normally grouped with interaction laws (2.4a-e) because steady solutions for law (2.4f), like those 
for (2.4a-e), do not become singular at the onset of reversed flow. 
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If A 9 H, (2.4g) simplifies to p+ = p - ,  which implies A = 2( f+-f-). The resulting 
problem is equivalent to one with A = 0 and a forcing f = +( f++f-). If A < R! then 
the boundary layers are independent in the vicinity of the distortion, and (2.49) 
reduces to A = 0 (Secomb 1979). 

The nature of solutions to (2.1)-(2.4) depends on whether or not there are 
instabilities included in the formulation.? For the case of the linearized problem, 
analytical solutions show that the stability of the underlying shear flow, u = y ,  to 
T-S waves has an important qualitative effect on the solution. Three different types 
of behaviour can be identified : 

(i) For (2.4b, c, f )  stable analytical solutions exist (Ryzhov & Zhuk 1982; Duck 
1985~) .  

(ii) For (2.4a, e ,  h) the basic shear is unstable to 'high '-frequency T-S disturbances 
(Smith 1979a, 6, c ;  Bogdanova & Ryzhov 1983). A distortion oscillated so as to excite 
all frequencies thus generates a growing disturbance, which for t % 1 is dominated 
by the fastest-growing mode (Benjamin 1961). This mode has an order-one growth 
rate, wavenumber and frequency. 

(iii) For (2.4d) unstable T-S waves again exist, however unlike (ii) there is no 
fastest-growing mode. In particular for wavenumbers a B 1, the growth rate 
Im (ac) - (+a)+, with the result that the problem is ill-posed. Thus, if all frequencies 
are initially excited, the dominant disturbance lengthscale tends to decrease as 
shorter-wavelength modes grow to significance. For appropriate initial conditions 
this results in a singularity developing within a finite time (cf. Moore 1979; also 
Professors S. N. Brown & F. T. Smith private communication 1984). 

Instabilities are therefore often unavoidably excited for relations (2.4a, d ,  e, h).  
Inter alia this has important consequences for numerical calculations ; for instance 
the inevitable errors in any numerical solution may excite spurious disturbances and 
lead to departures even from the exact solution u = y , f  = 0.  This effect is particularly 
acute for finite-difference calculations with (2.4d), because attempts to improve the 
accuracy by grid refinement may result only in the introduction of shorter-wavelength 
faster-growing numerical errors (cf. $5). 

Although nonlinear effects modify the growth of any instability, for example 
through harmonic-harmonic interactions, numerical calculations by Duck (19854 
and others demonstrate qualitative differences in solution depending on whether 
growing T-S disturbances are present or not. Growth in the amplitude of T-S waves 
is not, however, the only way that an interactive boundary-layer calculation can 
become dominated by instability. In the next section we show that once the 
underlying constant shear has been deformed a Rayleigh instability may develop. 
This instability can arise for any of the above pressure-displacement relations. Its 
occurrence leads to the typical disturbance lengthscale decreasing and accuracy 
difficulties in numerical calculations. 

3. Rayleigh modes 
The Rayleigh instabilities of interest have short wavelengths and high frequencies 

compared with the lengthscale and oscillation frequency of the forcing. We therefore 
introduce the fast length and time scales (X, T) = a(z,t), where a 9 1 .  As usual, the 

t For example, in the channel flow problem instabilities may be included/excluded by suitable 
choice of the distortion length. 
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linear stability of the exact solution, denoted by the subscript zero, is tested by 
introducing infinitesimal harmonic disturbances of amplitude E : 

(u, v) = (u,,, vo) (5, y, t) +sJal(z, t)  exp ( i W ,  T)) (a, aE) (5, y, t )  + . . ., ( 3 . 1 ~ )  

(P, A )  = (po, A,) (2, t )  +eJal(z, t)  exp (i@(X, TI) @, 2) (2, t )  + . . ., (3.lb) 

where ex = ~ ( z ,  t ) ,  0, = - K ( X ,  t) c(z, t ) ,  K,+ (CK), = 0. ( 3 . 1 ~ )  

e d ,  aK and c are the local amplitude, wavenumber and complex wavespeed 
respectively, and should strictly be expanded in powers of a-t (although that is not 
done here as the calculation is taken only to leading order). Hereafter the dependence 
of variables on the slow scales x, t will not be displayed explicitly. 

Substitution of (3.1) into (2.1) yields the long-wave Rayleigh (LWR)? equation at 
leading order : 

iKTi+@,, = 0, iK(u,-c) U+Vu,,, = -i@. (3.2a, b) 

The boundary conditions are the inviscid ones of zero velocity normal to the wall 
and a match with the displacement function at infinity, i.e. 

- 
(3.3a, b) v = o  o n y = ~ ,  U =  _"Y+Z asy-+co. 

The no-slip boundary condition can be satisfied by introducing a thin passive Stokes 
layer of thickness a-f adjacent to the wall. 

- 
iK 

A solution to (3.2) and (3.3) exists if 

If uo = c at some y = yc, the integral is to be evaluated with Im (c) = O +  . 
Substitution of (3.1 b) into the pressure-displacement relations of $2 yields 

- 
A = -sP, (3.5) 

where s = 0 for (2.4a, b,  e , f ,  h),  5 = 1 for ( 2 . 4 ~ )  and 5 = - 1 for (2.4d). The eigenvalue 
relation for the complex wavespeed c is therefore 

where the integral has been written in a form suitable for numerical integration (u,,(y) 
usually tends to unity exponentially as y+ co). Once c is determined from (3.6) the 
variations in local wavenumber and growth rate can be calculated from ( 3 . 1 ~ ) .  

To show the existence of realistic velocity profiles for which (3.6) can be satisfied, 
we consider flow past the distortion 

f(z,t) = h(t)  exp - (-lx'>. (3.7) 

For simplicity the 'zero-displacement ' interaction law (2.4f) is studied ; without loss 
of generality we can then choose the normalization A = &. In  the caae of flows through 
channels, symmetric distortions, or those much longer or shorter than fi, are there- 
fore being considered (see $2). 

t We emphasize that while the disturbance wavelength is short compared with the lengthscale 
of the forcing, it is large compared with the boundary-layer thickness. The latter is the characteristic 
wavelength of Rayleigh modes, thus the long-wave Rayleigh equation is obtained. 
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FIGURE 1.  Streamline pattern for steady flow past contraction (3.7) with h = 2. 

Relation (2.4f) has the advantage over other interaction laws that there are no 
upstream free-interactions (Smith 19764, and hence a shorter integration range in 
x is adequate. Further, the choice A = 0 means that streamlines far from the wall 
are not significantly deflected, i.e. A = 0 is similar, but not identical, to putting a ‘lid’ 
on the flow (cf. flows with other interaction laws where the flow tends to lift up over 
the distortion, e.g. Smith 1 9 8 2 ~ ) .  As a result the fluid tends to accelerate over the 
hump, which means, when combined with the reduction in shear near the wall, that 
an inflexion point is likely to develop away from the wall. 

The stability of steady flows is considerd first (see $14 and 5 for unsteady flows). 
Numerical solutions of (2.1)-(2.3) for steady forced states were obtained using the 
Keller-box method (Smith 1974), together with extended backward differences in 
regions of reversed flow (Dijkstra 1979). The streamline pattern for a hill of height 
h = 2 is illustrated in figure 1. 

There are objections to using extended backwards differences to deal with 
backflow, as pointed out by Smith (1984). A more satisfactory alternative method 
is to find the steady solution as the large-time limit of an unsteady flow (Rizzetta, 
Burggraf 6 Jenson 1978), but a comparison between the two methods for h = -2 
yielded solutions which were graphically indistinguishable. Consequently, we do not 
believe that our subsequent stability calculations are adversely affected by using 
the computationally cheaper, extended-backward-difference method. Further, the 
unsteady time-marching method may not lead to the steady solution if LWR modes 
exist. This is demonstrated in $5 where converged steady solutions are integrated 
forward in time without changing the hill height. Any LWR modes present magnify 
the unavoidable small numerical errors and an instability rapidly develops (see 
figure 3). 

Given a steady velocity profile, solutions to (3.6) were sought by the secant method. 
The only significant difficulty was in evaluating the integral when I Im (c) I 4 1, and 
this was overcome by using a rational function of polynomials to approximate the 
integrand locally (see Appendix B). The resulting Pad6-approximant method 
accurately evaluates contour integrals around single or double poles, even when the 
integrand is known only at  discrete grid points. 

For h = 2 unstable eigensolutions could be found from x = xL, where xL x 0.05 
is shortly after the peak of the hill, to x = xu x 2.4. The complex wavespeeds 
for xL < x < xu, which were obtained from calculations based on a rectangular grid 
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FIGURE 2. (a) Complex wavespeed c as a function of z for flow illustrated in figure 1. (b )  Maximum 
value of Im (c) for different distortion heights. Also plotted are the corresponding Re (c), and the 
position z = z, of the maximum. 

with ymax = 5 and 2 and y steps of 0.0125 and 0.05 respectively, are illustrated in 
figure 2 (a). The growth-rate tends to zero at xL, xu. The values of c found with the 
grid steps doubled are graphically indistinguishable from those shown in figure 2 (a). 
As the height of the hill is reduced the range of x for which the LWR instability 
exists decreases, as does the maximum value of Im (c) (figure 2b). LWR modes were 
found for h 2 0.70, and the flow was unidirectional for h 5 1.51 ; thus reversed flow 
is not a requisite for this instability. Similar stability calculations have also shown 
that LWR modes can be found for steady flow over a periodic distortion when the 
subsonic law ( 2 . 4 ~ )  applies. 

For all distortions solved with h > 0, Fjartoft's criterion is satisfied downstream 
of an h-dependent point on the lee side of the hill (i.e. uoyv(y) (uo(y) -uo(ys)) < 0 for 
some y, where uoy,(ys) = 0). Thus for distortion (3.7), satisfaction of Fjartoft's 
criterion is not sufficient for LWR modes to exist. 

Fjartoft's criterion is however a necessary condition for the instability of flows with 
the disturbance boundary condition 2 = 0, i.e. s = 0; for proceeding in the standard 
way from (3.2a, b) it  follows that (e.g. Drazin & Reid 1981) 

where * denotes a complex-conjugate. If 2 = 0, as is the case for interaction laws 
(2.4a, b,  e-h), it follows from (3.3) that the right-hand side is zero in the limit y+  00. 

Rayleigh's inflexion-point theorem and Fjartoft's necessary criterion for instability 
then result from taking the real and imaginary parts of (3.8) respectively. 

However if 2 = kj5 (see 2.4c, d ) )  the right-hand side of (3.8) is non-zero as y+  co. 
In Appendix C it is shown that (i) Rayleigh's theorem is then replaced by the 
condition that that uoyy must be positive somewhere in the flow, and (ii) that for 
(2.4d), unstable velocity profiles exist which are inflexion-point free. 

The analysis leading to the eigenvalue relation (3.6) is based on a % 1, i.e. a typical 
disturbance wavelength is assumed short compared with the interaction lengthscale. 
However, a cannot be made too large without neglected physical effects coming to 
the fore. In particular, disturbances with wavelengths of the same order as the 
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asymptotically small boundary-layer thickness are governed by the full Rayleigh 
equation : 

(3.9) 
- 

(u0 - C) (Zyy - kf) - uoYy v = 0, 

where k is a suitably scaled wavenumber (see also Smith & Bodonyi 1985). For flows 
with interaction laws (2.4a, b, e, f, h) the boundary conditions are V = 0 on y = 0 and 

Smith & Bodonyi (1985) have solved (3.9) for both model analytical velocity 
profiles and numerically generated ones. They found that as the height of the 
distortion increased the flow became unstable first to small k, i.e. LWR, modes, and 
that there was a cutoff value of k above which unstable modes could not be found. 
Independently, we obtained similar results using a family of piecewise-linear profiles 
with a constant shear at  infinity?; but in addition profiles were found for which 
unstable modes with only non-zero wavenumbers existed. Solutions to (3.9) show that 
for k = O(1) Fjertoft’s criterion is again not a sufficient instability condition for 
velocity profiles that tend to a constant shear at infinity. In  contrast, for classical 
boundary-layer velocity profiles, i.e. profiles which tend to a constant velocity as 
y+ co, it  is generally accepted that Fjertoft’s condition is sufficient (Tollmien 1936, 
and others). 

There is another important difference between the Rayleigh modes associated with 
interactive velocity profiles and those for classical boundary-layer profiles. For k < 1 
the above implies that the ‘interactive ’ LWR modes have Im ( c )  formally comparable 
to Re (c), i.e. the growth-rate is a leading-order effect. It is for this reason that the 
LWR instability is contained within the interactive boundary-layer formulation. 
However, for classical velocity profiles the Rayleigh growth rate is a second-order 
effect, i.e. Im (c) < Re (c) when k Q 1. Asaresult the classical unsteady boundary-layer 
formulation does not include an inherent LWR instability.$ 

The unsteady ‘ inverse ’ boundary-layer problem has also received attention 
recently (Cebeci 1983). In  this formulation the boundary conditions (2.1 d ,  e ) ,  and the 
interaction law are replaced by 

- w + o  as y+m. 

u = v = 0 on y = 0, u+ U as y + m ,  S(x,t) = [om (l-:)dy (3.10) 

respectively, where S(x, t )  is a specified displacement thickness. A stability analysis 
demonstrates that unstable LWR modes are again possible if the velocity profile 
contains an inflexion point (see Appendix D). 

In  the next two sections the effects of unstable LWR modes on a numerical 
integration of the interactive boundary-layer equation are illustrated. 

4. Numerical method 
The unsteady interactive boundary-layer equation has previously been integrated 

numerically by Ruban (1978), Rizzetta et al. (1978) and Duck (l979,1985a, b). Duck 
(1979) used a second-order Keller-box scheme, and this is the method we adopt where 

t Proofilea with three linear components were used. As a check on this crude approximation, 
solutions of (3.9) were also calculated for piecewise-linear boundary-layer profiles that tend to a 
constant velocity at infinity. The Rayleigh stability characteristics so obtained were in good 
qualitative agreement with the known resulta for similarly shaped smooth velocity profiles. 

3 With 2 = 0 in (3.3b) and uo,+O &B y+ 00, (3.2) and (3.3) yield the eigensolution c = 0, = 0, 
and ?j = pu0, where ,!? is a constant. Hence at leading order the solution is neutral, although at higher 
order it turns out to be a decaying T S  wave. 
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u > 0.  However, Cebeci (1979) found that the straightforward Keller-box method was 
inadequate when extended regions of backflow developed. To overcome this he 
introduced a ‘zigzag’ finite-difference molecule in regions of reversed flow. This 
method allows upstream influence, but iterates forward in the z-direction throughout 
the calculation. It has been used with success in a number of boundary-layer problems 
(Cebeci 1979, 1983), and is relatively straightforward to incorporate into Duck’s 
(1979) interactive code. Only an outline of the method is given here. 

The solution was found on a finite-difference grid (xt, y j ,  tk ) ,  where xo is the farthest 
point upstream, 

( Y O ,  t o )  = ( O , O ) ,  ( ~ $ 7  Y j ,  t k )  = (xi-19 ~ i - 1 ,  tk-1)+ ( h i ,  Ayj, At,), (4.1) 

for i ,  j, k from 1,2, . . . to I, J, K respectively. The finite-difference equations were 
derived by first writing the governing equations (2.1) as a first-order system in terms 
of the new dependent variables G(z, y, t ) ,  C(z, y ,  t ) ,  and E ( z ,  y ,  t ) ,  where G is the stream 

(4.2) 
function and 

C = G , ,  E = C , .  

These two equations were approximated by second-order centre differences and 
averages about the point (zi, yj+ t k ) ,  while the standard Keller-box method centred 
on (zi+ yj-i, tk-+) was applied to the momentum equation where the streamwise flow 
u was positive. At points with reversed flow a mid-point (xi, yj+ tk-$ was taken, and 
the x-derivatives were approximated by a weighted zigzag average of the centre- 
differenced formulae at (zi+ yj+ t k )  and (xi+:, yj+ tk-l) .  For a constant z-step the 
arithmetic mean retains second-order accuracy. 

In  order to reduce the calculation time for the exponential hill (3.7), the 

( 4 . 3 ~ )  transformation 
x = sinh (5) 

was employed. Second-order accuracy is preserved by use of a constant [-step. Where 
increased accuracy near the wall was necessary, a variable y-step was implemented 
by means of the transformation 

y = z+@, (4.3b) 
where /I is a constant. 

Further details of the numerical solution procedure, including the Newton iteration 
which deals with the nonlinearity, can be found in Cebeci (1979, 1983), Bradshaw, 
Cebeci & Whitelaw (1981) and Smith (1974). The iteration procedure was to make 
one complete sweep in the x-direction at each time step, and at each x-station repeat 
the local iteration until z ISm( < 10-10, (4.4) 

m 

where the 8, were the changes to the numerical values of the dependent variables 
at each iteration. The zigzag molecule only allows information to travel upstream 
at the rate of one grid point per time step, hence it is necessary that (u lAt  < Ax 
wherever u < 0 if sufficient upstream influence is to be accounted for. This condition 
was satisfied in all the results presented below. 

The zero-displacement law (2.4f) was again chosen for study; the subsonic problem 
can also be solved after modifications to the above scheme (Veldman & Dijkstra 1980 
give a finite-difference approximation for (2 .4~) ) .  However, the other interaction laws 
both relate the pressure to the displacement at a point and admit upstream influence. 
We have found that this combination leads to difficulties in formulating a convergent 
numerical scheme based on local fmite differences, even after allowing for a degree 
of upstream influence through use of a zigzag molecule for the interaction law. In 
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particular, such schemes appear divergent when applied to the supersonic problem, 
and it seems necessary to allow the displacement function to interact instantaneously 
over the whole z-range. Both the semi-implicit finite-difference scheme of Rizzetta 
et al. (1978) and the spectral codes of Burggraf & Duck (1982), Duck (1985a) achieve 
this. 

If the wall starts moving a t  t = 0 then the boundary-layer thickness is proportional 
to  ti for t < 1.  To improve accuracy during this initial diffusive growth, we introduce 
the similarity variables (cf. Cebeci 1979) 

The transformation of the dependent variables and governing equations is straight- 
forward and the details are omitted. The changeover between the similarity variables 
used at the start of the calculation and the variables (G, C ,  E , p )  used subsequently 
was made a t  7 = 1.  With this choice there is no need to interpolate between grid points 
in the 7- and y-coordinates (see (4.5)). 

Below, unless specifically mentioned, a reference to Ay will imply that ,u = 0 with 
ymax = 5.0 in (4.3b), and to Az, that p = 3.0 with ymax = 4.0. 

5. Results 
As a check on the codes, and to investigate for instabilities, the steady solutions 

for flows past hills of shape (3.7) were taken as the initial conditions for unsteady 
integrations with a fixed hill height. In  all the tests for which sufficiently rejned grids 
were used, instabilities developed if and only if LWR modes had been found in $3. 
For example, with h = 0.6 no LWR modes were found (figure 2), and no instabilities 
were evident in the unsteady integrations. Similarly, with a hill height for which the 
steady solution satisfies Fjrartoft’s criterion nowhere (h = - 2), unsteady integrations 
converged to a steady state. The latter case provides an example where the zigzag 
molecule successfully describes an extensive region of reversed flow. The large-time 
limit of the unsteady integration, which is almost identical with the steady solution 
of $ 3, also provides confirmation of the accuracy of the backwards-difference 
approximation of that section. 

As a second check, some of Duck’s (1979) calculations for flows past moving 
distortions were repeated. For the distortion amplitudes he considered, the flows are 
stable to LWR modes, and agreement was found with figures 6 and 7 of his paper. 

Unsteady calculations were also performed for a steady hill with h = 0.9; a height 
for which LWR modes exist. In these runs the LWR modes so magnified the 
inevitable small numerical errors that a growing disturbance appeared. There is no 
backflow in the steady flow, and so the same exact solution satisfies both the steady 
and the unsteady finite-difference equations. The initial errors in the unsteady 
integration are thus related to the Newton iteration convergence criterion for the 
steady solution. The fact that the instability can develop from such small errors 
(typically suggests that the finite-difference scheme is modelling the equations 
faithfully. 

A larger, and better defined, initial perturbation can be introduced by using the 
zigzag molecule throughout the grid for, say, the first 10 time steps. Figure 3 
illustrates the growth of the pressure perturbation for a run which was started in this 
manner, and for which A[ = At = lop4 and Az = 0.02. Theoretically it should have 
been possible, given the local wavenumber, to predict the local wavespeed and growth 
rate from the theory of $3. Although the calculated and predicted values were always 
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of the same order, we were unable to obtain consistently good agreement. This 
difference may arise because the simple analysis based on our theory assumes a 
wavetrain with amplitude varying relatively slowly in z, whereas the disturbance 
shown in figure 3 may vary too rapidly. However, good agreement between the 
numerical calculations and the LWR instability was obtained by plotting the 
streamwise velocity perturbation and the amplitude of the corresponding complex 
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FIGURE 4. Comparison of streamwise velocity perturbation .li. and calculated eigenfunction JBI for 
constriction (3.7) with h = 0.9 (normalized at y = 0.1764). The grid ie At = A[ = lov4 and Az = 0.01 
with y = 49. 

eigenfunction ZZ (normalized to have the same value a t  y = 0.1764) - see figure 4. This 
graph is for a run with Az = 0.01, AC = At = and a y-scaling, y = 4za, which 
ensured sufficient resolution within the thin Stokes layer a t  the wall. The point of 
zero shear perturbation in the figure is real and corresponds to the inflexion point 
in the steady velocity profile (see (3.4)). 

The likely effect of grid refinement on the integrations can be deduced by noting 
that the growth rate of LWR modes is inversely proportional to the wavelength, and 
that in a finite-difference calculation the shortest-wavelength disturbance present will 
be governed by the grid size A .  So if the numerical solution is known to an aacuracy 
O(E) ,  where E might be a typical rounding error, the perturbation amplitude is liable 
to become formally order one in a time O( - (A In E)/Im ( c ) ) .  Refining ACand At should 
therefore lead to shorter-wavelength faster-growing disturbances. This trend was 
reflected in our calculations (see also figures 6-8), although it proved impossible to 
demonstrate conclusively that halving AC and At exactly doubled the growth rate. 
Further, to the extent that computational resources were available (i.e. down to 
At = &AC = &lop4), reducing At for fixed A [ ,  Az increased the growth rate, although 
not necessarily in proportion. (See below for discussion of the grid dependence for 
moving distortions.) 

Calculations were next performed for a distortion with the time dependence 

h( t )  = 0 for t < 0, h(t)  = H sin2 ( i x o t )  for t > 0, (5.1) 
where w = 1 was chosen as a typical frequency. First, the expansion H = -2 was 
studied. Figure 5 illustrates the wall shear at various times for a run with A[ = 0.025, 
At = 0.0125, and Ay = 0.1. A significant region of backflow develops, which the code 
successfully describes without becoming unstable. Note that the reversed-flow eddy 
at the wall peaks in strength before the expansion has moved fully out, and is rapidly 
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FIGURE 5. Wall shear at (a) t = 0.25, (b)  0.75, (c) 1.0, (a?) 1.25, (e) 1.75, for an oscillating 
expansion with H = -2. The grid is At = 0.0125, AC = 0.025, and A y  = 0.1. 
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eliminated as the wall starts to move in again. The flow becomes almost periodic after 
only two complete cycles. 

A similar calculation was then performed for H = 2, with A[ = 0.05, At = 0.0125, 
Ay = 0.1, cmin = -2.5, and gmax = 2.5. As illustrated in figure 6 an eddy is generated 
on the lee side of the hump as the wall moves out. Then as the wall moves back in, 
this eddy splits in two with a clockwise-rotating eddy swept downstream with the 
flow. However, when the g-step is halved (Ay = 0.025), rather than a smoother version 
of this solution being obtained, the flow structure breaks up with two, and later three, 
smaller eddies formed downstream of the hump (figure 7). With the [-step doubled 
(Ag = 0.1) the eddy splitting is very much less pronounced - see figure 8.t 

For each of the three values of A[ above, the solutions were found to become 
approximately independent of At with step refinement. For instance, for A[ = 0.05 
runs with At = 0.025, 0.0125 (figure 6), and 0.00625 yielded almost identical 
streamline patterns and pressures. Also, although the flow in figure 7 for A[ = 0.025 
changes slightly on reducing At (three eddies appear downstream), the streamline 
patterns are approximately the same for At = i A [  and &Ag. 

In  figure 9 the Fourier spectra of the pressure for some of the runs with A[ = 0.025 
have been plotted (essentially the same spectra were obtained using 32-figure 
arithmetic and a tighter iteration tolerance than (4.5)). In  order to remove the effect 
of the discontinuity between cmin and gmax, which would introduce extra high- 
wavenumber modes, the pressure has been scaled by t (1-  tanh (lo([-4))). The 
spectra agree up to about t = 1.25 (although this does not necessarily imply that the 
numerical solution is accurate - see figure 10). For larger times a major difference 
in the spectra develops about wavenumber 50, where the difference between the run 

t The 'kinks' in the streamlines near the wall in figures 6-8 are due to the contouring routine 
rather than irregularities in the calculated values of the stream function. 

15 PLY 168 
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FIGURE 7. As for figure 6, but A[ = 0.025 and (a) t = 1.25, ( b )  1.375. 

with At = A[ (one downstream eddy) and those with smaller At (several downstream 
eddies) is both growing in time, and increasing as At is decreased. This difference 
appears to be the 'eddy-splitting' process as it has the correct wavenumber for the 
approximately four A[-step wide main eddies that occur with the smaller At. 

Next, the effect of holding At constant and varying A[ was studied. For At = 0.025, 
the streamlines are virtually the same for Al; = +At and &At, and the flow pattern is 
essentially that shown in figure 6, with one main eddy being swept downstream. 
However, for At = 0.0125, as A[ was decreased the disturbance to the flow became 
increasingly vigorous. In particular, for Al; = ?iAt there were many eddies at t = 1.375, 
and the calculations failed to converge at t = 1.4625. 

From the above it is clear that the numerical instability is related to both At And 
A[, even when its effect is nonlinear and beyond the scope of 83 (changes in Ay are 
not significant provided there are sufficient points near the wall). The increase in 
growth rate with decrease in step size is consistent with an LWR instability. Further, 
an examination of the instantaneous velocity profiles for H = 2, A[ = 0.05, 
At = 0.0125, andAy = 0.1 showsthat fort 2 0.625LWRmodesarepresentsomewhere 
in the flow on the downstream side of the hill, and that the numerical instability is 

15-2 
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FIGURE 8. As for figure 7, but A[ = 0.10. 

strongest where the modes have their largest growth rate. For smaller values of H 
(e.g. H = 0.6) no instability was evident and no LWR modes could be found. 

The dependence on step size makes it difficult to assess at what times the numerical 
results are reliable. For instance, the agreement between figures 6-8 a t  t = 1.25 is 
encouraging, but it is not conclusive because a sufficient decrease in step size for given 
rounding error can theoretically lead to the instability becoming order one at  any 
fixed time after the LWR instability arises (see figure 10, and also $6). 

Altering the frequency of the hill oscillation while holding the dimensions constant 
also affects the stability of the boundary-layer problem to LWR modes. In general, 
decreasing the frequency destabilizes the calculations by giving the unstable modes 
a greater opportunity to grow. In particular, for a very slowly oscillating hill the flow 
can be calculated to leading order as a sequence of quasi-steady problems, which were 
shown in $3 to be unstable if h 2 0.7. In contrast, increasing the frequency appears 
to stabilize the flow. For fast time variations Duck (1979) has shown that a two-layer 
asymptotic structure develops, consisting of an inviscid outer region and a Stokes 
layer at  the wall. Although this flow has inflexion points, it does not admit LWR 
modes. 



Unsteady interactive boundary-layer equation 447 

lo-' 

d 3 10-8 
P 
P 

4 10-4; 
10-63 

lo-@ 

1 

10-1 

lo-' 

10-8 

10-4 
0 20 40 60 80 100 0 20 40 60 80 100 

Wavenumber Wavenumber 

1 0 - 4 4  
0 20 40 60 80 100 

Wavenumber 

FIGURE 9. Fourier spectra of pressure distribution for moving constriction (3.7) with H = 2. The 
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FIINJRE 10. Streamline pattern for moving constriction (3.7) with H = 2 at t = 1.25. 
(a)Ay=0.1,A~=0.00625,At=0.025;(b)Ay=0.1,Af;=0.003125,At=0.0125. 

6. Discussion 
Our principal conclusion is that the unsteady interactive formulation includes 

within it the mechanism for a long-wave Rayleigh instability. For interaction laws 
(2.4a, b, e , f ,  h) LWR modes can arise only if the streamwise velocity profile satisfies 
both Rayleigh’s and Fjmtoft’s theorems ; although satisfaction of the latter theorem 
is not sufficient for the existence of either long-wavelength, or finite-wavelength, 
modes. For the hypersonic and Smith-Daniels (S-D) interaction laws we have been 
unable to show that either Rayleigh’s or Fjsrtoft’s theorems apply to LWR modes. 
Indeed unstable velocity profiles can be constructed in S-D flow which do not include 
inflexion points (Appendix C). 

The unsteady ‘inverse ’ boundary-layer formulation also contains the LWR 
instability (with its consequent numerical difficulties). In this case Rayleigh’s, but 
not Fjsrtoft’s, theorem has been recovered. For all the above formulations there 
are extensions of the instability analysis to three-dimensional flows, although these 
are not given here. 

The effect of LWR modes on a numerical calculation was illustrated by solution 
of a problem describing flow through a slightly distorted channel. For sufficiently 
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large oscillation amplitudes of the distortion the flow generated became unstable to 
LWR modes. Once present, these modes resulted in the typical lengthscale of the 
motion decreasing, and made it difficult to obtain highly accurate finite-difference 
solutions ; e.g. grid refinement tended to be counter-productive because it intro- 
duced shorter-wavelength more-rapidly-growing instabilities which resulted in 
truncation/rounding error growing to significance in a shorter time. 

A similar loss of accuracy is encountered in the use of point-vortex methods to solve 
unsteady inviscid vortex sheet flows, e.g. increasing the number of point vortices can 
lead to an increasingly vigorous Kelvin-Helmholtz (K-H) instability (e.g. Moore 
1981). This instability is acute because K-H modes, like LWR modes, have a growth 
rate that is directly proportional to the wavenumber a. Thus they have no 
fastest-growing mode and leave the problem ill-posed. In a numerical calculation, it 
is possible to ‘control’ the K-H instability to a certain extent either by spectral 
filtering or linear smoothing (Longuet-Higgins & Cokelet 1976 ; Moore 1981 ; Krasny 
1986), and similar techniques may be successful here. 

The physical mechanism which generates the LWR (or K-H) instability, and 
creates difficulties in a numerical calculation, is of course present in an ‘exact’ 
solution. In  the case of vortex-sheet flows Moore (1979) has shown that if an initial 
disturbance has a Fourier transform that decays exponentially with increasing 
wavenumber, then as a result of the growth of K-H modes (i) the linear perturbation 
problem loses its analyticity after a finite time, and (ii) the full nonlinear flow can 
also develop a weak singularity in its vorticity distribution within a finite time. 

Dr J. W. Elliott and Professor F. T. Smith (private communication 1984) have 
found instabilities similar to the above while studying marginally separated flows 
with an underlying velocity profile u = y2. They show that, as in K-H flow, the 
linear disturbance problem can develop a finite-time singularity, and they surmize 
that a singularity develops in their nonlinear problem (see also Smith 19823). 

If the present instability is localized in space and consists only of LWR waves, then 
from (3.1) the linear perturbation velocity v“ = v-vo is 

CO 

v“ - s d ( x ,  t ;  a) exp (i@(X, T ;  a)) aV(z, y, t ;  a)  da, (6.1) 

where, for simplicity, @,(X,O;a) = 1, d ( z , O ; a )  = g(a )G(z ) ,  and g(a) is negligible 
when a is not large. The most straightforward case to consider is where the basic 
velocity profile and initial local wavenumber are both independent of x, so that 
@,(X, T ;  a )  = 1 from (3.1 c). It then follows that if g(a)  decays exponentially with 
a, a finite-time singularity develops in the linear solution (6.1) if Im (j c dt)  becomes 
sufficiently large. By analogy with K-H flow, this suggests that i t  may be possible 
for the nonlinear solution to terminate in a singularity. Note that for a smooth 
distortion the exact solution does not become singular as soon as an LWR instability 
exists; although as the grid is refined, our numerical method fails in a shorter time. 
If the distortion’s shape is such that the solution’s Fourier spectrum decays 
algebraically with wavenumber, then (6.1) suggests that the solution may become 
singular almost as soon as LWR modes appear.t 

t Many of the calculations were repeated for a distortion with&, t )  = h(t)  sinS (xz), for 0 < z < 1, 
andf = 0 elsewhere. The results were qualitatively the same as for the exponential hill (3.7), despite 
the algebraic decay of the Fourier transform off. In particular, numerical solutions could be found 
well past the time at which LWR modes first appeared, although this may have been the result 
of using too coarse a grid. 
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If a singularity develops it will be necessary to consider asymptotic length and time 
scales other than those contained within the interactive boundary-layer formulation. 
However, an alternative way of modelling the flows in question might be to use the 
reduced Naviedtokes equations suggested by Smith, Papageorgiou & Elliott (1984). 
This formulation, which includes finite-wavelength Rayleigh effects and thus the 
fastest-growing mode, may be singularity-free even if the interactive boundary-layer 
formulation is not. 

In  order to determine whether a nonlinear singularity can develop in the interactive 
formulation, the present finite-difference code would need refinement (e.g. by the 
introduction of spectral filtering) ; alternatively a full spectral code could be used 
(Duck 1985a). An improved code should also provide further information on the eddy 
splitting, some corroboration of which is given by the Naviedtokes solutions of 
Belotserkovskii, Gushchin & Shchennikov (1975) for impulsively started flow past a 
circular cylinder. For R B loo0 the eddies in their solution (which is forced to be 
symmetric) do not settle down to a steady state but repeatedly divide. Also, we note 
that vortex shedding in a wall layer has been found in experimental studies of flow 
in constricted tubes (Cassanova & Giddens 1978; Ahmed & Giddens 1983). 

Although our numerical results become unreliable before the initial eddy has 
divided completely, they are consistent with this effect being initiated by the LWR 
modes ( $ 5 ) .  Consequently, it is possible that the eddy splitting observed by 
Stephanoff et al. (1983) is the finite-Reynolds-number manifestation of a Rayleigh 
instability. An alternative explanation of this phenomenon arises from including 
classical boundary layers in the inviscid analysis of Pedley & Stephanoff (1985). At 
sufficiently low oscillation frequencies the boundary-layer solution can terminate in 
a singularity, indicating that fluid is being ejected at a relatively large velocity from 
the boundary layer. This ejection may cause the eddy splitting. 

The observation that velocity profiles with inflexion points exist for which no 
Rayleigh modes of any wavelength can be found (Appendix C and Smith & Bodonyi 
1985), may be of potential relevance to the experiments of Klebanoff et al. (1962) and 
others on the ‘spike’ instabilities that occur in both boundary-layer and Poiseuille 
flow. Betchov (1960) and Greenspan & Benny (1963) proposed that the spike 
instability is an inflexion-point instability, and Nishioka, Asai & Iida (1980) found 
reasonably good agreement between experiment and an inviscid two-dimensional 
Rayleigh mode analysis. However, these theories do not fully explain why the spike 
instability is observed some time after the instantaneous velocity profiles satisfy 
Fjmtoft’s criterion (which, in the case of classical boundary-layer velocity profiles, 
is normally a sufficient condition for instability). The reason for this may lie in the 
three-dimensionality and unsteadiness of the experiments. An alternative explanation 
may come from the application of the analysis above to free T-S waves described 
by the interactive boundary-layer equations. Such an unsteady analysis may 
demonstrate, in qualitative agreement with the experiments, that a Rayleigh 
instability develops only some time after Fjmtoft ’s criterion is satisfied. 

Our h a 1  point is that there is the difficulty when constructing a theoretical model 
of a given observed flow of deciding which instabilities identified in an asymptotic 
analysis are relevant to a particular range of Reynolds numbers. In  the case of 8 t d y  
solutions all unsteady instabilities are suppressed, and the asymptotic solution is 
assumed to be correct at large but stable Reynolds numbers. 

The criterion for including/excluding instabilities in unsteady large Reynolds 
number asymptotics is less clear cut. In a system with random noise and a sufficiently 
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large Reynolds number, the most rapidly growing instability will be of most 
relevance. Alternatively, in a ‘ noise-free ’ forced flow, asymptotic scalings might be 
sought which either suppress all instabilities, or lead to the preferential excitation 
of others (for instance, insights into unsteady marginally separated flows have been 
obtained by suppressing the rapidly growing Rayleigh modes associated with the 
velocity profile’s inflexion point, in favour of instabilities highlighted by interactive 
boundary-layer length and time scales). However, where instabilities have been scaled 
out of the problem and implicitly suppressed, careful justification seems necessary 
if a remaining asymptotic instability is said to describe an experimental observation. 

In  the case of the LWR modes identified above we suggest that they might be 
observable when a T-S instability is not, both because they have a faster growth rate 
than the T-S waves, and because the finite-Reynolds-number manifestations of 
Rayleigh instabilities tend to have lower critical Reynolds numbers than T-S-based 
instabilities (see for example the solutions of the Odommerfe ld  equations referred 
to by Drazin & Reid 1981). 

However, it is not always expedient to suppress all but the fastest growing 
instability, or to favour Rayleigh modes. For example, Bodonyi, Smith & Gajjar 
(1983) and Smith & Bodonyi (1982) have studied the asymptotic structure of 
nonlinear upper-branch free T-S waves for both accelerating boundary-layer flow and 
Hagen-Poiseuille pipe flow. Both these studies include Stokes layers at the boundaries 
and nonlinear critical layers in the middle of the flow. However, the Stokes layers 
are unstable to Rayleigh modes over a typical time scale O(R-4) (Cowley 1985), i.e. 
a time scale much shorter than the O( 1) period of the nonlinear T-S wave, while the 
work of Killworth & McIntyre (1985) suggests that the intermediate states through 
which the nonlinear critical layers will pass in attaining the assumed steady states 
may also be unstable to Rayleigh modes. Similarly, the Stokes layers generated by 
the high-frequency T-S waves studied by Smith & Burggraf (1985) are unstable to 
Rayleigh modes which have growth rates asymptotically larger than those of the T-S 
waves themselves (see also the rapidly growing Gortler instabilities found by Hall 
& Bennett (1986) for T-S waves propagating over a curved boundary). 

The authors are grateful to Dr M. E. McIntyre for initially suggesting that an 
inviscid instability was responsible for the eddy splitting observed by Stephanoff 
et al. They are also grateful to Dr T. J. Pedley and Professor F. T. Smith for useful 
discussions, to the latter for revealing details of his work, and to the referees’ for their 
helpful comments. 0. R. T. thanks the SERC for financial support. 

Appendix A. The stability of classical boundary-layer solutions 
The aim of this Appendix is to demonstrate that solutions of the classical 

boundary-layer equation are unstable to rapidly growing asymptotic instabilities. To 
fix ideas the governing equations and boundary conditions for impulsively started 
flow past a circular cylinder are considered: 

u,+vy = 0, ut+uu,+vuy = sinx cosx+uyy, (A la) 

u = v = O  o n y = O ;  u = O  onx=O,x ;  u-tsins asy+oo. (Alb )  

The solution to these equations on the forward face of the cylinder is unidirectional, 
while for t 2 0.644 reversed flow develops on the rearward face as the point of zero 
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wall shear xo moves upstream from x = R. A t  t = t ,  x 3.00, x = xs x 1.93 a singularity 
develops (van Dommelen & Shen 1980). 

It is convenient to consider different sections of the cylinder’s surface in turn : 
(i) On the forward face of the cylinder, uJy = 0) > 0, uYJy = O! < 0, and u 

increases monotonically with y. By application of the asymptotic description of T-S 
waves (e.g. Smith 1979a; Bodonyi & Smith 1981) it follows that linear disturbances 
with wavelengths between the lower- and upper-branch scalings, O(R-g) and O(R-h) 
respectively, have growth rates of O(&) where R is the Reynolds number based on 
cylinder diameter. Hence a multiple-scales argument formally demonstrates that the 
solution on the front of the cylinder is unstable. 

(ii) On the whole of the reverse side of the cylinder there are inflexion points in 
the velocity profiles and Fj~rtoft’s criterion is satisfied. For an < x < xo the velocity 
profiles are monotonic increasing functions of y, and hence Tollmien’s (1936) 
heurisitic arguments suggest that Rayleigh modes with growth rates of O(&) will 
exist. These modes have fast growth rates and short wavelengths compared to the 
boundary-layer scales, and hence the classical boundary-layer solution is again 
formally unstable. 

(iii) For the section of the rearward side xo < x < R, two types of mode exist. First, 
there is an unstable mode which has a lower branch with the T-S wavelength scale 
O ( R d ) .  Detailed calculations are necessary to determine whether this mode’s upper 
branch is on the O(R-4) Rayleigh lengthscale, or on the O(R-ft) T-S lengthscale (in 
the latter case the mode’s asymptotic structure is slightly different from that known 
for a monotonic velocity profile because of the presence of two critical layers). 
Whatever the scale of the upper branch, this instability yields the classical boundary- 
layer solution formally unstable. 

Secondly, there is a mode connected with the point of zero shear. Both the fastest 
growth rate and the upper branch of this mode occur on the O(R-:) Rayleigh 
lengthscale. Its existence follows either from an asymptotic analysis of long-wave- 
length Rayleigh modes similar to that in Gill & Davey (1969), or from a short-wave- 
length stability analysis based on (A 1) (Cowley et al. 1985). 

The above is not an extensive discussion, and special cases occur near x = 0, in, 
xo, R (see also Smith & Elliott 1985). Our aim has been to emphasize that the good 
agreement between classical boundary -layer theory and those large-Reynolds-number 
experiments which are apparently instability free (e.g. Bouard 6 Coutanceau 1980), 
is achieved by implicitly suppressing asymptotic instabilities. 

Appendix B. The quadrature algorithm 
The algorithm used to evaluate the contour integral I = j ’f(y’) dy‘ was based on 

a rational function (i.e. Pad6) approximation of the integrand f. As usual the 
integration range was subdivided, and without loss of generality we consider the 
interval (0, h). The subscripts 0 , l  are used to denote y = 0, h respectively, and fj,f; 
( j  = 0 , l )  are assumed known. 

The integrands of interest may include double-pole singularities, hence locally f is 
approximated by (cf. the more-usual Taylor series) 

’ +k. +- e 
f(y) - (1 +dy)2 (1 + d y )  

This approximation is a logical extension of Corkill & Stewart’s (1983) work on the 
numerical solution of singular general relativity problems (see also their references). 
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Substituting (B 1) into the integral, and expressing the undetermined constants in 
terms of the f,, f ;, we obtain 

edh (2+dh) 
+gd-’ log (1 +dh) + kh, 

(1 + dh)2 
I1-I0 x 

k =  fo-e-g, g=-(2e+d-lfi), 2ed2h= ( l+dh)8 f I - ( l+dh) f i ,  (B2b)  

(B 2 4  fl -fo f {(fl (1 +dh) = - w; filt 
hf I 

The only significant difficulty with this method is in choosing the appropriate sign 
for the square root in (B 2c). Our algorithm chose the sign that yielded the least 
change in the predicted position of the singularity between (B 2c), i.e. -d- l ,  and the 
equivalent expression for the sub-ranges (-h, 0) or (h, 2h). This choice is at least 
appropriate when the integrand is of the form (B 1). 

The above integration scheme is relatively expensive computationally, and fails 
i f f ;  is small. Hence over part of the integration range the ‘cheaper’ corrected 
trapezoidal rule was used. The choice of scheme depended on the local value of 
e = fiz/foj,”. Near a double (single) pole e % 8 (a) respectively. The Pad6 scheme was 
employed for eL Q 8 Q eu, where typically eL = 0.25, eu = 0.95; although eu was 
varied on occasion to aid convergence of the secant iteration (see $3). We estimated 
e by assuming that locally f N a( 1 + d ~ ) ~ ;  then by elimination of a, b and d, 

The Pad6 approximation is formally O(h2) accurate, while the corrected trapezoidal 
rule is O(h4). Hence within their respective ranges of validity either algorithm is more 
than adequate, because the integrand itself is a numerical solution and only known 
to O(h2).  Checks on the accuracy of the algorithm have been made; for example (B 1) 
can be integrated extremely accurately through a singularity on the real axis. 

Appendix C. LWR instability of hypersonic and Smith-Daniels flow 
For hypersonic and Smith-Daniels flow the standard proof of Rayleigh’s and 

Fjrartoft’s theoremsfails because, from (3.2)-(3.5),B+iejjK(y+A0-c)-iFKas y+  a. 
Thus, for e P 0, the right-hand side of (3.8) becomes unbounded as y+ 00. However, 
by rearranging (3.8) we obtain 

A modification of Rayleigh’s theorem follows by taking the imaginary part of (C l),  
viz. if Im (c) P 0, then uoyy > 0 somewhere in the flow. The real part of (C 1) appears 
to yield no generalization of Fj~rtoft’s theorem. 

For Smith-Daniels flow, the existence of LWR modes can be illustrated by 
considering velocity profiles with uo = y+u,, where Iul 1 4 1. Then from (3.6) 

where the integration contour is to be deformed beneath/above y = 1 according as 
Im (c )  3 0. The integral can be evaluated consistently, and hence LWR modes exist, 
if u;(l) > 0 (note that there is 1u) inflexion-point condition). 
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No equivalent demonstration of the existence LWR modes for hypersonic flow has 
been found, although for both hypersonic and Smith-Daniels flows continuous 
piecewise-linear velocity profiles can readily be constructed which admit LWR modes. 

Appendix D. LWR instability of inverse boundary-layer solutions 

disturbances is considered. Perturbations of the form (3.1 a) and 
In this Appendix the stability of inverse boundary-layer solutions to LWR 

(D 1) 

(D 2 4  

(D 2 b )  

U = Uo(z,  t ) + s d ( z ,  t) exp (iB(X,T))E(z, t), 

-(uo-c)vy+zruoy = -(U0-c) v', 
are studied. Substitution into (2 . la ,  b )  and (3.10) yields 

- 

- 
W = O  o n y = ~ ,  E,+T' asy- tm,  

Solution of (D 2) results in the eigenvalue relation (assuming v' $: 0) 

I3 = (1 -(e)2) uo - c2 dy. 

Also 5+T'(y-B) as y- tm,  and hence in the limit y+co (3.8) becomes 

Rayleigh's inflexion-point theorem follows from taking the imaginary part of (D 4), 
while after minimal manipulation the real part yields 

where uovv(ys) = 0. It follows that Fjrartoft's theorem holds where I3 < 0, but that the 
theorem might be violated where S > 0. 

Numerical solutions for uo have not been substituted into the eigenvalue relation 
(D 3). However, unstable LWR modes have been found for model piecewise-linear 
velocity profiles with I3 > 0 and either a slight velocity overshoot or significant 
reversed flow. 
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